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MONOTONICITY PRESERVATION ON TRIANGLES 

MICHAEL S. FLOATER AND J. M. PENA 

ABSTRACT. It is well known that Bernstein polynomials on triangles preserve 
monotonicity. In this paper we define and study three kinds of monotonicity 
preservation of systems of bivariate functions on a triangle. We characterize 
and compare several of these systems and derive some geometric applications. 

1. INTRODUCTION 

In geometric modelling it is an advantage if the curve or surface being modelled 
tends to preserve the shape of its control polygon or control net respectively. For 
curves and surfaces which can be represented as graphs of univariate and bivariate 
functions respectively, one of the simplest shape properties is monotonicity. 

Two recent papers ([3] and [1]) present characterizations of systems of univariate 
functions that preserve monotonicity on an interval. Specifically, it was shown in 
Proposition 2.3 of [1] that a sequence of functions uO, u1,... , Undefined on an 
interval [a,b] is monotonicity preserving if and only if the function ZnIOU j (x) 
is constant and the function n. u j(x) is increasing for i = 1,... ,n. It was 
further shown in [1] how monotonicity preservation can be reformulated in terms 
of the positivity of minors of collocation matrices of uo0, ul,.. , un, and that total 
positivity (see [11] and [9]) is a sufficient condition for monotonicity preservation. 

As far as we are aware the only known non-trivial basis of functions on a triangle 
which preserves monotonicity is the Bernstein basis of polynomials (see for instance 
Sec. 5.1 of [9]). In this paper we address two natural questions which arise from 
this: (1) is the Bernstein basis unique in having this property, and (2) if not, what 
characterizes such bases and what other shape properties do they possess? As we 
will see, the answers depend on how one defines monotonicity preservation. 

In Section 2 we introduce notation and basic definitions, and derive some pre- 
liminary results. We define three types of systems of (n+2) functions defined on 
a triangle: axially monotonicity preserving (AMP), monotonicity preserving (MP) 
and strongly monotonicity preserving (SMP) systems. They satisfy the relation 

SMP X MP X AMP. 

In Section 3 we characterize AMP systems and from this derive two geometric 
properties of parametric surfaces generated by AMP systems (of nonnegative func- 
tions): the convex hull property and a length-diminishing property of iso-curves. It 
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follows that the Bernstein basis is just one of a large class of function systems hav- 
ing desirable shape preserving properties when used to model surfaces in computer 
aided design. 

The length-diminishing property of nonnegative AMP systems contrasts with 
the fact that a similar area-diminishing property does not hold even for Bezier 
surfaces, as pointed out by Goodman [9], p. 346. Some related variation diminishing 
properties of Bernstein polynomials on triangles have been studied in [7] and [8]. At 
the end of Section 3 we show that AMP systems also have the interesting property 
(distinct from the univariate case) of linearity preservation. Moreover, by a minor 
modification one can construct a new AMP system with the stronger property of 
linear precision. 

In the remaining sections (4, 5, and 6) we compare AMP systems with MP and 
SMP systems for small n. We begin by showing in Section 4 that the case n = 1 
(three functions) is somewhat trivial, as the three classes of systems AMP, MP 
and SMP are then equivalent. Next, in Section 5, we focus on the non-trivial case 
n = 2 and derive a more explicit characterization of AMP systems of six functions. 
Correspondingly, in Section 6 we characterize MP and SMP systems of six functions. 

From the three characterizations in the case n = 2, we make two interesting 
observations. The first is that AMP and MP systems are surprisingly closely related. 
The second is that, in contrast to AMP and MP systems, there are very few SMP 
systems. In fact, except and trivial cases, the only systems of six functions which 
are SMP are quadratic polynomials whose leading terms are a common multiple 
of the corresponding quadratic Bernstein polynomials. Thus strong monotonicity 
preservation is an example of a property which is unique to the Bernstein basis (and 
trivial extensions of it). This is not untypical of the Bernstein basis. For example, 
in the univariate case, the Bernstein basis is the one which has both optimal shape 
preserving properties [2] and optimal stability (among non-negative polynomials) 

[6] (see also [4]). 

2. BASIC DEFINITIONS AND PRELIMINARY RESULTS 

Let i = (iO,i1,i2) denote a multi-index with io, i1, i2 in + = {0,1,2,... 
We denote by Jil the sum of the coefficients io + il + i2. We let eo = (1,0,0), 
e= (0,1,0), e2 = (0,0,1) and fo = (0,1,1), fi = (1,0,1), f2 = (1,1,0). 

Let po, P1, P2 be three non-collinear points in R2 and let T C R2 be their convex 
hull, the triangle with vertices po, P1, P2. For some n > 1 suppose we are given, for 
each i such that Iii = n, a function qi: T R Il. There are (n+2) such functions, 
and we will refer to them as a system and write (qi) Jil=n. Given also associated 
coefficients ci E IR, ii = n, we can define a function f: T -- IR by 

(2.1) f(x) = E ciqi(x), x E T. 
IiI=n 

Central to our discussion will be the notion of shape preservation; we are inter- 
ested in systems (qj)IjiIn for which f in (2.1) tends to mimic the shape of its control 
net defined by the coefficients ci. In order to define the control net, consider the 
(n+2) points in T, 

(2.2) xi = i-u +-p1 +-P2 Jil = n. 
n no-P?P2 n1 
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FIGURE 1. The triangulation in the case n = 2 

These points form the vertices of a natural triangulation of T whose triangles are 
of two types. For IiI = n - 1, we let Ti be the triangle with vertices Xi+eo, Xi+ej, 
Xi+e2, and for |il = n - 2, we let Si be the triangle with vertices xi+fo, xi+f1, Xi+f2 
Then 

T = Mlil=n-l U ISil-il=n-2 

is the regular triangulation of T formed by those lines parallel to the sides of T 
through the points xi as illustrated in Figure 1. We define the control net of f 
to be the function p: T -* IR which is linear on each triangle in T and satisfies 
p(Xi) = ci, jil = n. 

The particular kind of shape preservation we are interested in is monotonicity 
preservation. 

Definition 2.1. Let d be a vector in 1R2 with d -7 0. We say that the system 

(qi)jiI=n is mtonotonicity preserving with respect to d, if it has the property that f 
in (2.1) is (monotonically) increasing in the direction d whenever its control net p 
is increasing in the direction d. 

Let us remark that by replacing f and ci in (2.1) by -f and -ci one can readily 
show that if the system (q$) ij=n is monotonicity preserving with respect to d, then 
it is also monotonicity preserving with respect to -d. Moreover, this observation 
leads us to a further one which will play an important role in the forthcoming 
discussion: a system which is monotonicity preserving with respect to d has the 
property that if the control net of f in (2.1) is constant in the direction d, then so 
is f. 
Definition 2.2. We say that the system (01i)ji=n is monotonicity preserving (MP) 
if it is monotonicity preserving with respect to all vectors d E ]R2, d : 0. 

A system of functions on T which will serve as a model of monotonicity preser- 
vation is the Bernstein basis. Given any point x E ]R2, we identify it with its 
barycentric coordinates A0o(x), A1 (x), A2(x) defined by 

(2.3) Ao(X)po + A1(x)pl + A2(x)p2 = x 

and 

(2.4) AO(x) + Al(x) + A2(X) = 1. 
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The three functions Ao0, 1, A2 are linear on R12, and 

{x E R2 :Ao(X), 1(X), >2(X) > 0} =T and A (pi) = 6. 

The Bernstein polynomials 

B.(x) = \i ! Ai0(X)A I(X)A\22(X), il = n, 
,. ,~~1 

form a basis for the linear space of polynomials of degree < n (see Chapter 18 of 
[5] or Section 6.3 of [10]). 

It seems to have been first suggested by Goodman [9] that Bernstein polynomials 
on triangles are monotonicity preserving. To understand this, let us consider the 
directional derivative Ddf of a differentiable function f: T -* IR in the direction 
d = (d1,d2) at a point x =(x1,x2): 

Of Of 
Ddf (x)= dj a (x) + d2 (x) 

The following result is well known (cf. Section 17.4 of [5]). 

Lemma 2.3. For a given vector d E R12 , let 'yo, -Yl, -Y2 be the solutions of the 
equations 

(2.5) 0YoPo + 7YP1 + 7Y2P2 = d 

and 

(2.6) '0 + 71 + 'y2 = ? 
If f: T -? IR is such that 

(2.7) f(x) = g(0o(x), >1(X), >2(X)) 

for some differentiable trivariate function g: R- R, then 

Ddf g O9g Og 
Ddf = t0 'O + 7Y10 + 7Y2 - 

Next we want to know how to establish the monotonicity of a control net in a 
direction d. As the following lemma will show, this can be done by checking the 
signs of the difference operators 

EdCi := Y0 Ci+eo + Y1 Ci+ei + 7Y2Ci+e2, jil = n- 1, 

FdCi := (y1 + -Y2)Ci+fo + (70 + -Y2)Ci+fl + (Co + Y1)Ci+f2, jil = n- 2, 

which reflect the slopes of the control net over triangles of type T; and Si respec- 
tively. 

Lemma 2.4. The control net p: T --I R is increasing in the direction d E R2, 
d 740, if and only if Edci > O for Jil = n -1 and Fdci >! Ofor Jil = n -2. 

Proof. Let F: T ---I1R be the linear function 

F(x) = AO(x)ajoo + Ai(x)aolo + A2(x)aool. 

If for given i = (iO, i1.i2), jil = n7- 1, we let aek = nCi+ek- K, k = 0, 1, 2, and 

K = ioCi+eo + ilCi+el + i2Ci+e2l 
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then a straightforward calculation using (2.2) shows that F(xi+ek) = Ci+ek, k = 
0, 1, 2, and so PITi = FITi. Therefore for x E Int(Ti) we find from Lemma 2.3 that 

Ddp(X) = DdF(X) = Edao = nEdci. 

If for jil = n - 2, we let aioo = n(ci+fl + Ci+f2) - K, aolo = n(ci+f2 + Ci+fo) - K, 
aool = n(ci+fo + ci+f) - K, and 

K = (iO + il + 1)Ci+f2 + (io + i2 + 1)Ci+fl + (il + i2 + 1)Ci+fo, 

then a further calculation using (2.2) shows that F(xi+fk) = ci+fk, k = 0, 1,2. 
Therefore PIs, = FIsi, and so, for x E Int(Si), 

Ddp(x) = DdF(x) = nFdci. 

D 

Returning now to the Bernstein case Oi = Bi in (2.1), we use Lemma 2.3 and a 
change of summation index in order to derive the identity (see also Chapter 18 of 
[5]) 

(2.8) Ddf (x) = n E EdciBi(x). 
Iil=n-1 

FRom Lemma 2.4 it therefore follows that the system (Bi) il=n is monotonicity 
preserving, confirming the assertion in [9]. In fact we notice that the expression for 
Ddf(x) in (2.8) is independent of the differences FdCi, jil = n - 2, and therefore 
independent of the gradient of the control net p over triangles of type Si. This 
suggests defining an evidently stronger property than monotonicity preservation 
which the Bernstein polynomials also satisfy: 

Definition 2.5. We say that the system (q)1ij=n is strongly monotonicity preserv- 
ing (SMP) provided that for all non-zero d E R2, if Edci > 0 for jil = n-1, then 
f in (2.1) is increasing in the direction d. 

On the other hand, it seems to us worthwhile also to study a property which 
is clearly weaker than monotonicity preservation by restricting d to the directions 
of the edges of the triangle T. Following the literature on convexity preservation 
(see e.g. [12]), we view the three edges of T as 'axes' and define the property axial 
monotonicity preservation accordingly: 

Definition 2.6. We say that the system ($i)jiI=n is axially monotonicity preserving 
(AMP) if it is monotonicity preserving with respect to the vectors P1 - Po, P2 - P1, 
and po -P2. 

We will now derive some basic properties of AMP systems and consequently also 
of MP and SMP systems. 

Lemma 2.7. Let (5i) jil=n be an AMP system and let f be the function in (2.1). If 
ci= cj whenever io = jo (resp. il = i1, i2 = 2), then f is constant in the direction 
P2-P1 (resp. PO-P2, P1-PO) 

Proof. If d = P2 - P1, then from (2.5) and (2.6) we have yo = 0, yi = -1, and 
-= 1. It follows that 

EdCi = Ci+e2 - Ci+eli lil = n -1, and FdCi = Ci+f, - Ci+f2, il = n -2. 

Thus the control net of f is constant in the direction P2 - P1 if and only if Ci+e2 = 

Ci+el for jil = n - 1. Therefore if ci = cj whenever io = jo, the control net of f is 
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constant in the direction P2 - P1, and since (qi) ij=n is AMP, f is also constant in 
the direction P2 - P1. The remaining two cases can be treated analogously. El 

A simple consequence of Lemma 2.7 is the following. 

Proposition 2.8. If (q5i)1ij=, is an AMP system, then Elil=n qi is a constant 
function. 

Proof. Letting c; = 1 in Lemma 2.7, we deduce that Elil=n i is constant in the 
two linearly independent directions P2 - Pi and po - P2 ? 

The following necessary conditions are also consequences of Lemma 2.7. 

Proposition 2.9. Let (q5i)1i1=n be an AMP system. Then: 

(i) For all io = 0,1, .1. , n, the function EZj1=njo=io Oj is constant in the direction 
P2 -P1l 

(ii) For all i1 = 0, 1,. . ., n, the function Ejjj=n,j3=i, )j is constant in the direction 
Po - P2 

(iii) For all i2 = 0, 1, ... , n, the function Ejjj=n 2=i2 Oj is constant in the direction 
Pi -Po* 

Proof. In case (i) we let cj = 1 when jo = io and cj = 0 otherwise. We then apply 
Lemma 2.7 to f (x) = EZIj I=njo0=io qj. Cases (ii) and (iii) are similar. D 

In particular we observe that if (0qi)ji=n is axially monotonicity preserving, then 
?nOO, OOnO, and q500n are essentially univariate functions, and so all the three types 
of monotonicity preservation in Definitions 2.2, 2.5, 2.6 place heavy restrictions on 
the functions in the system, unlike in the univariate case. 

3. AXIALLY MONOTONICITY PRESERVING SYSTEMS 

In this section we characterize all axially monotonicity preserving systems 
(0i)li=n and derive some geometric properties of them. 

We begin with the characterization and, to this end, we define the functions 
i 1 i2 to 

4'? = S ioj,n-io -ij 4i = =on-i -j,ii,i = 0j,n-i2-j,i2 

j=O j=O j=O 

for il = n, which are partial sums of rows of the qi. 

Theorem 3.1. Let (q51)1ij=n be a system of (n2+2) functions. Then the following 
properties are equivalent: 

(i) (0i)jiI=n is AMP. 
(ii) For all i with Jil = n, and k = 0,1, 2, the function Oj is constant in the 

direction d = Pk+2 - Pk+1 when ik+2 = 0, and increasing in the direction d 
when ik+2 > 0 (and k + j denotes (k + j) mod 3 for j E Z). 

Proof. Suppose that ($i)ji_=n is AMP. Then Proposition 2.9 shows that for io = 

0,1 ... X n, the function 0?n-i0 o is constant in the direction P2 - P1l If for any 
i = (io,i1,i2), il = n, such that i2 > 0, we let Cioj,n-io-j = 1 for j = 0,1,... , 
and c; = 0 otherwise, then the control net p is increasing in the direction P2 - P1, 
and therefore 4'9 is increasing in the direction P2 - P1l Since the cases k = 1, 2 are 
similar, we have established property (ii). 
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Next suppose that the system (qj) jj=n satisfies (ii). By comparing coefficients, 
one can show that for x E T and io E {O, 1,... , n} we have 

n-io 

I: Cio ,i1,n-io -ij Oio ,i1,n-io -i 

il =0 
n-io-1 

= Cio,n-io ,O + (Cio,i,n-io-i -Cio,il+l,n-io-il-1)'9io4i,n-io-il 

i1=0 

If x1, x2 are two distinct points in T and the vector x2- x1 has the same direction 
as P2 - P1, we also have, from (ii), 

tio ,n-io,o (Xl ) = 0fio ,n-io ,0 (X2), 

and hence 

f(X2) - f(X1) 
n n-io 

=E E Cio,il,n-io-i0io,ii,n-io-il(X2) 

io=0 il=0 

n n-io 

+ Cio,ii,n-io-ii0io,ii,n-io-il (Xl) 

(3.1) io=0 i1=0 
n n-jo 

= (Cio ,i,n-io-ij -Cio,ij+1,n-io-i -1) 

io=0 il=0 

X io ,i1 ,n-io-j1 (X2) o ,i1,n-io-i (x1)) 

E Ep2 pP Ci (4i0+e2(X2) -Oi+e2 (X1)). 
jil=n-1 

This means that, again by (ii), if the control net of f is increasing in the direction 
d = P2 - P1, then so is f. An identical argument for the other two axial directions 
establishes that the system (0i)1ij=n is AMP. D 

As we would expect, Theorem 3.1 can be used as an alternative way to show that 
the Bernstein polynomials are AMP. Indeed, a straightforward calculation using 
Lemma 2.3 shows that 

n-io 

Bio,il,rnio-ii (X) X (, )Aio(X) (1-Ao(x))n io, 
i1=0 

Z 

which is constant in the direction P2- P1, and using the identity (see Chapter 18 
of [5]) 

DdBi (x) = n (yo0Bi-eo (X)+ ?yi Bi-ei (X) + -Y2Bi-e2 (x)), 

one can show that 

Dp_p fiP (x) = nBi-e2(x) ? 0. 
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In the remainder of this section we explore some geometric properties of axially 
monotonicity preserving systems. 

Given an AMP system (0j)ljl=, of nonnegative functions, not all of which are 
zero, Proposition 2.8 implies that the functions sum up to a positive constant. 
Thus, by merely dividing them by this constant, we obtain a new AMP system 
which is also a blending system (also called a partition of unity), that is, Xi > 0 and 

Eli,=, qi(x) = 1, for all x E T. Blending systems have two important aspects. One 
is that since the functions sum to one, for a given set of points (Ci)lil=n, Ci E I 
we can take a corresponding affine combination in order to define a parametric 
surface S: T -* 1R3 by 

(3.2) S(x) = E q5(x)Ci, x E T. 
lil=n 

In keeping with the Bernstein case qi = Bi, we will refer to the Ci as the control 
points of S. In the Bernstein case, the surface S is called a Be'zier surface (see 
Chapter 18 of [5]). 

The second aspect of blending systems is that since the functions are non- 
negative as well as summing to one, they have the convex hull property, i.e. any 
point of the surface S in (3.2) lies in the convex hull of its control points Ci. This 
shape property gives a designer control over the rough shape of S. 

Next we derive a shape property of AMP blending systems. For a E [0,1) the 
two points xk = (1 - a)pk + apo, k = 1, 2, define a line segment xc,: [0, 1] -* T 
given by 

x,>(t) = (1 -t)xI + tx2. 

Let -y, : [0,1] - R3 be the curve -yc,(t) = S(xc,(t)), which we call an iso-curve of 
S, for the function Ao(xc,(t)) is constant in t. For ] = 0, 1, ... , n - 1 let Pj denote 
the polygonal arc with vertices Cj,n-j,O, Cj,n_-j 1, X ... X CjAn-j. Let us call Pi an 
iso-polygon, for its vertices are those control points Ci0,1,i2,X io + il + i2 = n, whose 
multi-indices share the same first coordinate, namely io = j. 

Let us recall that the total variation of a vector valued function -y: [a, b] -* JR3 
is defined by 

N 

TVQ(y) sup E 1y(tk) - y(tk_1)11, 
tO< ... <tNE[a,b] k=1 

N>1 

where . is any norm in R. If TV(a) < o, then ay is said to be a vector 
valued function of bounded variation. If 11 11 is the Euclidean norm, then TV(Qy) is 
precisely the length L(^y) of the curve. In the following we show that the length of 
any iso-curve of S is bounded by the maximum length of its iso-polygons. 

Proposition 3.2. Let (5i)lil=n be an AMP blending system. Then for a E [0,1), 
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Proof. For N > 1, 0 < to < t, < ... < tN < I and a e [0,1) we have, from 
equation (3.1), 

N 

E I'YQ(tk) - ^(tk-1)11 
k=1 

N 

= 3E Ep2 -P1Ci (io++e2 (Xc, (tk)) )- i+e2 (Xc, (tk- 1))) 
k=1 lil=n-1 

N 

< 3 E 3 EP2-P1 Ci || E (0 ?/e2 (Xc (tk)) -Vi+e2 (XCr(tk- 1))) 
lil=n-1 k=1 

< E ||EP2 -p1 Ci 11 0i0+e2 (Xc, (tN) ) 

lil=n-1 
n n-io 

= E E |lcio,ii,n-io-il - Cio,ij+1,n-io-ij-lllioiV,)io -ii (xc,(tN)) 
io=O i1=0 

n 

<E fio n-io,0(XC,(tN)) L(Pio) 

io =O 

<E ?bi(X((tN)) maX L(Pio) = max L(P,- )io) 
jil=n i0=0,1...n 

1i= 1,-n 1 

Taking the supremum over all sequences satisfying 0 < to < t1 < ... < tN < 1, the 
result follows. D 

There is clearly an analogous property for iso-curves in the other two axial di- 
rections. 

Proposition 3.2 implies that the iso-curves of a Bezier surface are not longer than 
the longest of its iso-polygons in the same direction. This is interesting in view of 
the surprising fact, established by Goodman (see p. 346 of [9]), that the surface 
area of a Bezier surface is not necessarily bounded above by the surface area of its 
control net. 

Though Theorem 3.1 provides necessary and sufficient conditions for axial mono- 
tonicity preservation, it does not reveal a further necessary condition when the 
functions are differentiable, namely preservation of linearity, which is interesting in 
the light of the univariate case, in which there is no such property. 

Theorem 3.3. Let (q5i)ji1=n be an AMP system of differentiable functions. Then 
if the control net p of f in (2.1) is linear, then so is f. 

Proof. If p is linear, we must have 

(3.3) ci = 
1cnuu 

+-COnO +-coon, n. 
n n n 

Therefore if we define the three functions on T, 

(3.4) fk(X) = 
k 

E i - (X) k = 0,1, 2, 
lil=n 
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,we find that 

(3.5) f(x) = E ci q(x) = fo(x)cnoo + fl(x)cono + f2(X)cooOn 
Iil=n 

As will be shown in Lemma 3.4, the three functions fo, fl, f2 are linear, and 
therefore f is linear. D 

Lemma 3.4. Let (qj)1ijj=n be an AMP system of differentiable functions. Then 
there exist constants a, bo, b1, b2 E JR with a > 0 such that the functions defined in 
(3.4) satisfy 

(3.6) fo(x) = aAo(x) + bo, fi(x) = aAi(x) + bi, f2(x) = aA2(x)+ b2 

Proof. Summing the functions fk and recalling Proposition 2.8, we have 

fo(x) + fi(x) + f2(x) = E Xi(x) = K 
Iil=n 

for some constant K independent of x. Further, we have from Proposition 2.9 
that fo is constant in the direction P2 - P1, and so fo(x) = go(Ao(x)) for some 
differentiable function go: [0, 1] -* IR. Similarly there exist functions 91, 92: [0, 1] 
R such that fi (x) = gi (Al (x)) and f2(x) = g2(A2(X)), and then 

go (Ao (x)) + ?gi(A (x))+ 92(A2 (x)) = K. 

Differentiating with respect to any d E 1R2 and using Lemma 2.3, we find that 

yog0(Ao(x)) + yi g'(Al(x)) + -y2g'(A2(X)) = 0, 

and choosing (-yo, -Yl, -Y2) to be (1, -1, 0) we deduce that 

0(o (x)) = g' (Al (X)). 

Varying x so that Ao(x) varies while Ai(x) remains constant, it follows that g0 
must be a constant function on [0,1]. Similarly, gj and g9 must be constant, and 
moreover 

9o(Ao) = g9(Al) = g9(A2) = a, 
for some constant a. Integrating, we find that 

go(Ao) = aAo + bo, 91(A) = aAi + bi, 92(A2)= aA2+ b2, 

for some constants bo, b1, b2 (and summing the gk we have K = a + bo ? b1 + b2). 
If now the control net p of f is linear, then the coefficients ci satisfy (3.3) and, 

from (3.5), f takes the form 

f(x) = (aAo(x) + bo)CnOO + (aAi(x) + bi)COnO + (aA2(X)' +b2)cCOOn 

Therefore for any vector d E R2, 

Ddf(X) = a(yOCnOO + _YCOnO + Y2CO0n) = aDdp(x), 

and we see that because ($)1ij=n is AMP, we must have a > 0. D1 

If a = 1 and bo = b1 i b2 = 0 in Lemma 3.4, then the AMP system (j)jij=n has 
linear precision. In other words, if 1: T -* IR is any linear function, then 

1(x) = E l(xj)q$i(x), x E T. 
Iil=n 
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Indeed, from (3.6) we have in this case that fk(x) = Ak(X), k = 0,1, 2. If we let 
ci = l(xi), then (3.3) holds, and so from (3.5) we obtain 

S 1(xi)?/i(x) = 5 ciq5i(x) = Ao(X)CnOO + Al (X)COnO + A2(X)cOOn = 1(X) 

jil=n jli=n 

Given an arbitrary AMP system (qi)jij=n, we can construct a new system (5i)il=rn 
which is AMP and has linear precision. We can compute a, bo, bl, b2 from fo, fl, f2 

and, if a is strictly positive, one could for example define 

=nOO =(n - bo)) ? OnO =- - b1), OOn =(OOn-b2), a a a 
and 

a 
for all other i, jil = n. 

If the system (qi)lil=n has linear precision, then we remark that the graph of f 
in (2.1) can be represented as a parametric surface S of the form (3.2), as is well 
known for Bernstein polynomials. Indeed, we let Ci = (xi, ci), and then 

(x,f(x)) = S(x), X E T. 

4. AMP, MP AND SMP SYSTEMS WHEN n = 1 

In this section we characterize all systems of differentiable functions (i) jil=n 
satisfying Definitions 2.2, 2.5, 2.6 for the case n = 1. We show that all such 
systems consist of linear functions, unlike in the univariate case. 

Theorem 4.1. Let (q5i)jij=j be a system of three differentiable functions. Then the 
following statements are equivalent: 

(i) (q5i)1i1=i is SMP. 
(ii) (q5i)1i1=, is MP. 

(iii) (q5i)1i1=1 is AMP. 
(iv) There exist constants a,bo,b1,b2 E R with a > 0 such that 

(4.1) 
kioo(x) = aAo(x) + bo, Ooio (x) = aAj (x) + bl, Ooo1 (x) = aA2 (x) + b2 

Proof. We observed earlier that (i) implies (ii) and (ii) implies (iii). Since the 
functions fo, fl, f2 in (3.4) are precisely kioo, koio, kooi respectively, Lemma 3.4 
shows that (iii) implies (iv). If (iv) holds, then f in (2.1) takes the form 

f(x) = (aAo(x) + bo)cloo + (aAj(x) + bl)colo + (aA2(x) + b2)Coo0. 

Therefore, for any vector d E R 

Ddf(X) = a(QyOcjoo + Yijcojn + y2COO1) = aEdcO. 

So from Definition 2.5, we deduce that the system (0i)1ij=1 is SMP. D 

As we noticed before, Bernstein polynomials are strongly monotonicity preserv- 
ing. In the case n = 1, we can confirm that they belong to the class of functions 
of type (iv) in Theorem 4.1 by setting a = 1 and bo = b1 = b2 = 0. We remark 
also that in the case n = 1, it is not surprising that monotonicity preservation 
and strong monotonicity preservation are equivalent since then the triangulation 
T = {Tooo} contains no triangles of type Si. 
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5. AMP SYSTEMS WHEN n = 2 

In Section 3 we characterized AMP systems in terms of the partial sums . 
In this section we derive a more explicit characterization in the case n = 2 which 
expresses the six functions Xi as sums of univariate functions of barycentric coor- 
dinates. 

Theorem 5.1. Let 
(0i)1ij=2 

be a system of six differentiable functions. Then the 
following two properties are equivalent: 

(i) (i)1ij=2 is AAMP. 
(ii) There exist constants a, bo b1, b2 E R where a > 0, and there exist functions 

90, 91, 92: [0, 1] - R where g'(s) < a for s E [0, 1], k = 0, 1, 2 and 

(5.1) 

9(S) + g91(t) > 0, g91(S) + g92(t) > ?,g 2(S) + g9o(t) > 0, 8, t > 0, s + t < 1, 

such that 

1 lo (X) = go (Ao (x)) + gi (Al (x) )-92(A2 (X)), 

(5.2) k1ol (x) = go(Ao(x)) - gi(Al (x)) + 92(A2(x)), 

1 (X) = -go(Ao(x)) + gi (Al (x)) + 92(A2(X)), 

and 

0200 (X)= aAo (x) + bo -o (Ao (x)), 

(5.3) 0020(x) = aAl(x) + b1 - gi(Al(x)), 

0002 (X) = aA2 (X) + b2 - 92(A2 (X) ). 

Proof. Suppose that (Gi)1iI=2 is axially monotonicity preserving. Then, by Lemma 
2.7, it can be deduced that there exist functions 90,91,92 : [0,1] >-* R such that 

(q110(x) + q101(x))/2 = go(Ao(x)), 

(q010(x) + q001 (x))/2 = gi(Al(x)), 

(q001 (x) + q510,(x))/2 = 92(A2(X)). 

Taking linear combinations of these equations, we obtain equations (5.2). Further, 
by Lemma 3.4 there exist constants a, bo, b1, b2 E R with a > 0 such that 

0200(X) + (bllo(x) + q101(x))/2 = fo(x) = aAo(x) + bo, 

0020(X) + (b1 1o(x) + q001 (x))/2 = fi(x) = aAl(x) + bi, 

0002(X) + (Xlo1(x) + 0q011(x))/2 = f2(x) = aA2(X) + b2, 

and so we obtain equations (5.3). Substituting the expressions for the Xi in (5.2) 
and (5.3) into f in (2.1) and employing Lemma 2.3, we find that for any vector 
d E R2, 

Ddf (x) = ((a - g(Ao(X)))C2oo + g(o(A(x))(cllo + col - co11)>yo 

(5.4) + ((a - g9(A>(X)))CO20 + g(Al(x))(cilo - c101 + coll)) -l 

+ ((a - g9(A2(X)))C002 + g9(A2(X))(-Cl O + C101 + C01 1)>y2 
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If we take the particular case d = P2 - P1 we have -yo = 0, -Yi = -1, -Y2 = 1, and so 

Dd f (x) = (g' (Al (x)) + g9 (A2(X)))(clol - C11O) 

+ (a - 9g(A2(X)))(CO02- coil) + (a - g'(Aj(x)))(coj- C020). 

Therefore if we let c1lo = 1 and ci = 0 otherwise, then, since the control net of f is 
increasing in the direction P2 - P1 and (0i) j1=2 is AMP, we deduce that 

g'(Al(x)) +g'(A2(x)) = Ddf(x) > 0. 

If on the other hand we let C002 = 1 and ci = 0 otherwise, we find that we must 
have 

a-2g(A2(X)) > 0 

By considering also the symmetric cases d = Po - P2 and d = P1 - Po one deduces 
the properties of go, 91, 92 in (ii). 

For the sufficiency part, suppose that the system (1i) iI=2 satisfies property (ii). 
Then if d = P2 - P1, the directional derivative Ddf (x) satisfies equation (5.4); and 
since the coefficients of the three differences are nonnegative we deduce that if p is 
increasing in the direction P2 - P1, then so is f. The same is true for the other two 
directions po - P2 and P1 - po, and so the system (0i) iI=2 is AMP. D1 

Since we know that Bernstein polynomials are axially monotonicity preserving, 
they must satisfy property (ii) of Theorem 5.1. Indeed, if we let a = 1, bo = bi = 
b2 = 0 and go(s) = gi(s) = 92(s) = g(s) = s(1 -s), we have that gb(S) = 1 -2s < a 
and 

g'(s) + g'(t) = 2(1 - s - t) > 0 

when s, t > 0 and s+t < 1. So the conditions of property (ii) are satisfied. Moreover 
we find for example that, from (5.3), 0200 = Ao - Ao(1 - Ao) = AO, and from (5.2), 

qllo = Ao(l - Ao) + Aj(1 - Al) - A2(1 - A2) 

= Ao(1 - Ao) + A1(1 - A2) -(1 - Ao - A1)(Ao + A1) = 2AoA1, 

and indeed Xi = Bi for all i, jil = 2. 

6. MP AND SMP SYSTEMS WHEN n = 2 

In the previous section we characterized all systems (j)jjj=n of six differentiable 
functions which are axially monotonicity preserving. In this section we deal with 
corresponding characterizations of monotonicity preserving systems and strongly 
monotonicity preserving systems when n = 2. These results allow us to make 
direct comparisons between the three classes of systems in the case n = 2. 

Taking into account Theorem 5.1 and the following result, we see that AMP 
systems and MP systems are closely related in the case n = 2. 

Theorem 6.1. Let (i)1ij=2 be a system of six differentiable functions. Then the 
following two properties are equivalent: 

(i) (00iji=2 is MP. 
(ii) The functions Xi satisfy property (ii) of Theorem 5.1, and in addition 

(6.1) 9g(Ao) + g(Al) +g'(A2) > a, AO,1,2? 0, So + A1o+AA2 < 1. 
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Proof. Suppose that ($i)jl=2 is MP. Then since it is also AMP, property (ii) of 
Theorem 5.1 holds. It remains to demonstrate equation (6.1). Since ($i)lj=2 is 
AMP, we know that for any d E R2, the directional derivative of f is given by 
equation (5.4), which by comparing the coefficients ci, Jil = 2, can be rearranged 
into the form 
(6.2) 

Ddf (x) = (a - g (Ao (x))) EdCeo + (a - g(A1 (x))) EdCei + (a - g'(A2(x))) EdCe2 

+ (g (Ao (x)) + g' (Al (x)) + g' (A2 (x))- a)Fdco. 

Now choosing -yo = Yi = 1/2, Y2 = -1 and letting c11o = 1, C200 = C020 = -1 and 
ci = 0 otherwise, we find that 

EdCeo = EdCe, = EdCe2 = 07 Fdco = 1, 

and therefore 

0(Ao (x)) + g' (Al (x)) + g'(A2(X))-a = Ddf(x) > 0. 

If on the other hand the system ($i)lil= satisfies property (ii), then since Ddf 
has the form (6.2) it immediately follows that if p is increasing in the direction d 
then so is f, and so (0q)jil=2 is MP. D1 

As we observed in Section 2, Bernstein polynomials are strongly monotonic- 
ity preserving. In contrast to axially monotonicity preservation and monotonicity 
preservation, we shall show that strong monotonicity preservation places a much 
stronger restriction on the system of functions in question. In fact, the follow- 
ing result shows that in the case n = 2, the six functions are constrained to be 
polynomials of degree at most two, just as in the Bernstein case. 

Theorem 6.2. Let (ri)l1=2 be a system of six twice differentiable functions. Then 
the following two properties are equivalent: 

(i) (0i)1il=2 is SMP. 
(ii) The functions qi satisfy property (ii) of Theorem 5.1, and in addition 

(6.3) gk(A) = AA2/2 + BkA + Ck, k = 0,1, 2, 

for some constants A, Bo, B1, B2, Co, Cl, C2 such that A + Bo + B1 + B2 = a. 

Proof. Suppose that (i)1il=2 is SMP. Since it is then also AMP, property (ii) of 
Theorem 5.1 holds and moreover, for any d E 11R2, the directional derivative of f 
with respect to d is given by equation (6.2). Choosing -yo = -y, = 1/2, Y2 = -1 and 
letting c11o = 1, c200 = C020= -1 and ci = 0 otherwise, one finds that 

EdCeo = EdCe, = EdCe2 = 0, Fdco = 1, 

and therefore 

(6.4) g?(Ao(x)) + g' (Al (x)) + gj2(2x)) -a = Ddf (x) = 0 

for all x E T. Now by an argument identical to that used in Lemma 3.4, and 
noticing that g', gj, g are differentiable, we deduce that 

(6.5) 9?(A) = AA + Bk, k = 0, 1, 2, 

for some constants A Bo, B1, B2. Summing g',g',gl and using (6.5) and (6.4), we 
find that A + Bo + B1 + B2 = a. Integrating equations (6.5) yields equations (6.3), 
and we have established property (ii). 
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Conversely, if the system (0i)jij=2 satisfies property (ii), then on substituting 
equation (6.4) into equation (6.2) we have for any d E 1R2 that 

Ddf(x) = (a - g(Ao (x)))EdCeo + (a - g (Al(x)))EdCe, + (a - gl(A2(x)))EdCe2 

Since g9 < a for all k = 0, 1, 2, it follows that ($i)1i1=2 is SMP. O 

Substituting the expressions (6.3) into (5.2) and (5.3) and recalling that Ao, Al, A2 

are linear and sum to one, we find that 

q$i(x) = -ABi(x)/2 + ui(x), jil = 2, 

for some linear functions ui. Thus, provided A is non-zero, each Xi is a quadratic 
polynomial and its nonlinear term is the quadratic Bernstein polynomial Bi multi- 
plied by a scalar. In the Bernstein case, A = -2 and ui = 0. 
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